3.6.23 \(\int \frac {\sqrt {a+b x^3} (A+B x^3)}{(e x)^{7/2}} \, dx\) [523]

Optimal. Leaf size=283 \[ \frac {(4 A b+5 a B) \sqrt {e x} \sqrt {a+b x^3}}{10 a e^4}-\frac {2 A \left (a+b x^3\right )^{3/2}}{5 a e (e x)^{5/2}}+\frac {3^{3/4} (4 A b+5 a B) \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{20 \sqrt [3]{a} e^4 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

-2/5*A*(b*x^3+a)^(3/2)/a/e/(e*x)^(5/2)+1/10*(4*A*b+5*B*a)*(e*x)^(1/2)*(b*x^3+a)^(1/2)/a/e^4+1/20*3^(3/4)*(4*A*
b+5*B*a)*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1
/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(
1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(e*x)^(1/2)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*
x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/a^(1/3)/e^4/(b*x^3+a)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1
/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 283, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {464, 285, 335, 231} \begin {gather*} \frac {3^{3/4} \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} (5 a B+4 A b) F\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{20 \sqrt [3]{a} e^4 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {\sqrt {e x} \sqrt {a+b x^3} (5 a B+4 A b)}{10 a e^4}-\frac {2 A \left (a+b x^3\right )^{3/2}}{5 a e (e x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*x^3]*(A + B*x^3))/(e*x)^(7/2),x]

[Out]

((4*A*b + 5*a*B)*Sqrt[e*x]*Sqrt[a + b*x^3])/(10*a*e^4) - (2*A*(a + b*x^3)^(3/2))/(5*a*e*(e*x)^(5/2)) + (3^(3/4
)*(4*A*b + 5*a*B)*Sqrt[e*x]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/(a^(1/3) +
(1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1
/3)*x)], (2 + Sqrt[3])/4])/(20*a^(1/3)*e^4*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt[3])*b^(
1/3)*x)^2]*Sqrt[a + b*x^3])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 464

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^3} \left (A+B x^3\right )}{(e x)^{7/2}} \, dx &=-\frac {2 A \left (a+b x^3\right )^{3/2}}{5 a e (e x)^{5/2}}+\frac {(4 A b+5 a B) \int \frac {\sqrt {a+b x^3}}{\sqrt {e x}} \, dx}{5 a e^3}\\ &=\frac {(4 A b+5 a B) \sqrt {e x} \sqrt {a+b x^3}}{10 a e^4}-\frac {2 A \left (a+b x^3\right )^{3/2}}{5 a e (e x)^{5/2}}+\frac {(3 (4 A b+5 a B)) \int \frac {1}{\sqrt {e x} \sqrt {a+b x^3}} \, dx}{20 e^3}\\ &=\frac {(4 A b+5 a B) \sqrt {e x} \sqrt {a+b x^3}}{10 a e^4}-\frac {2 A \left (a+b x^3\right )^{3/2}}{5 a e (e x)^{5/2}}+\frac {(3 (4 A b+5 a B)) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^6}{e^3}}} \, dx,x,\sqrt {e x}\right )}{10 e^4}\\ &=\frac {(4 A b+5 a B) \sqrt {e x} \sqrt {a+b x^3}}{10 a e^4}-\frac {2 A \left (a+b x^3\right )^{3/2}}{5 a e (e x)^{5/2}}+\frac {3^{3/4} (4 A b+5 a B) \sqrt {e x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{20 \sqrt [3]{a} e^4 \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.05, size = 97, normalized size = 0.34 \begin {gather*} \frac {2 x \sqrt {a+b x^3} \left (-A \left (a+b x^3\right ) \sqrt {1+\frac {b x^3}{a}}+(4 A b+5 a B) x^3 \, _2F_1\left (-\frac {1}{2},\frac {1}{6};\frac {7}{6};-\frac {b x^3}{a}\right )\right )}{5 a (e x)^{7/2} \sqrt {1+\frac {b x^3}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*x^3]*(A + B*x^3))/(e*x)^(7/2),x]

[Out]

(2*x*Sqrt[a + b*x^3]*(-(A*(a + b*x^3)*Sqrt[1 + (b*x^3)/a]) + (4*A*b + 5*a*B)*x^3*Hypergeometric2F1[-1/2, 1/6,
7/6, -((b*x^3)/a)]))/(5*a*(e*x)^(7/2)*Sqrt[1 + (b*x^3)/a])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.46, size = 3512, normalized size = 12.41 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^3+A)*(b*x^3+a)^(1/2)/(e*x)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/10*(b*x^3+a)^(1/2)/x^2/(-a*b^2)^(1/3)/b*(-60*I*B*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^
(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*
3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2
)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3)
)^(1/2))*(-a*b^2)^(1/3)*a*b*e*x^4+24*I*A*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/
2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a
*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-
1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*b^
3*e*x^5-48*I*A*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1
/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)
^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2
)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-a*b^2)^(1/3)*b^2*e*x^4-24*
A*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1
/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2)
)/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3
^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*b^3*e*x^5+48*A*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))
/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1
/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*Ellip
ticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2
))/(I*3^(1/2)-3))^(1/2))*(-a*b^2)^(1/3)*b^2*e*x^4-24*A*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)
))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/
2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*
x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/
2))*(-a*b^2)^(2/3)*b*e*x^3+30*I*B*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*
3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(
1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(
1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b^2*e*x
^5-12*A*(1/b^2*e*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(
1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*(-a*b^2)^(1/3)*((b*x^3+a)*e*x)^(1/2)*b+4*I*A*3^(1/2)*(1/b^2*e*x*(-b*x+(-a*b^
2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/
2)*(-a*b^2)^(1/3)*((b*x^3+a)*e*x)^(1/2)*b-5*I*B*3^(1/2)*(1/b^2*e*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(
1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*(-a*b^2)^(1/3)*((b*x^3+a)*e*
x)^(1/2)*b*x^3+24*I*A*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*
b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(
-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+
(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-a*b^2)^(2/3)*b*e*x^
3-30*B*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^
2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^
(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),
((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b^2*e*x^5+60*B*(-(I*3^(1/2)-3)*x*b/(-1+I*3
^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*
b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2
)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I
*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-a*b^2)^(1/3)*a*b*e*x^4-30*B*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2
)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((
I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)*(b*x^3+a)^(1/2)/(e*x)^(7/2),x, algorithm="maxima")

[Out]

e^(-7/2)*integrate((B*x^3 + A)*sqrt(b*x^3 + a)/x^(7/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)*(b*x^3+a)^(1/2)/(e*x)^(7/2),x, algorithm="fricas")

[Out]

integral((B*x^3 + A)*sqrt(b*x^3 + a)*e^(-7/2)/x^(7/2), x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 15.70, size = 100, normalized size = 0.35 \begin {gather*} \frac {A \sqrt {a} \Gamma \left (- \frac {5}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{6}, - \frac {1}{2} \\ \frac {1}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 e^{\frac {7}{2}} x^{\frac {5}{2}} \Gamma \left (\frac {1}{6}\right )} + \frac {B \sqrt {a} \sqrt {x} \Gamma \left (\frac {1}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{6} \\ \frac {7}{6} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 e^{\frac {7}{2}} \Gamma \left (\frac {7}{6}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**3+A)*(b*x**3+a)**(1/2)/(e*x)**(7/2),x)

[Out]

A*sqrt(a)*gamma(-5/6)*hyper((-5/6, -1/2), (1/6,), b*x**3*exp_polar(I*pi)/a)/(3*e**(7/2)*x**(5/2)*gamma(1/6)) +
 B*sqrt(a)*sqrt(x)*gamma(1/6)*hyper((-1/2, 1/6), (7/6,), b*x**3*exp_polar(I*pi)/a)/(3*e**(7/2)*gamma(7/6))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)*(b*x^3+a)^(1/2)/(e*x)^(7/2),x, algorithm="giac")

[Out]

integrate((B*x^3 + A)*sqrt(b*x^3 + a)*e^(-7/2)/x^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (B\,x^3+A\right )\,\sqrt {b\,x^3+a}}{{\left (e\,x\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*x^3)*(a + b*x^3)^(1/2))/(e*x)^(7/2),x)

[Out]

int(((A + B*x^3)*(a + b*x^3)^(1/2))/(e*x)^(7/2), x)

________________________________________________________________________________________